

DATOS DEL PROMOVENTE

Nombre:

Teléfono:

Tabla 1:

Institución o empresa:

"2022, Año de Ricardo Flores Magón, Precursor de la Revolución Mexicana"

COMENTARIOS

Con fundamento en el numeral 6.3.3.1 de la Norma Oficial Mexicana NOM-001-SSA1-2020, se publica el presente proyecto a efecto de que los interesados, a partir del 1° de noviembre y hasta el 31 de diciembre de 2022, lo analicen, evalúen y envíen sus observaciones o comentarios en idioma español y con el sustento técnico suficiente ante la CPFEUM, sito en Río Rhin número 57, colonia Cuauhtémoc, código postal 06500, Ciudad de México.

Correo electrónico: consultas@farmacopea.org.mx.

Cargo:

Dirección:

Correo electrónico:

EL TEXTO EN COLOR ROJO HA SIDO MODIFICADO		
Dice	Debe decir	Justificación*
SILICATO DE MAGNESIO Y ALUMINIO		
Silicato de magnesio y aluminio [1327-43-1]		
Silicato aluminio y magnesio [12511-31-8]		
Es una mezcla coloidal de montmorilonita y soponita que han sido procesados para eliminar arena y componentes minerales que no aumenten de volumen.		
Los requisitos para viscosidad y contenido de aluminio y magnesio difieren de acuerdo con el al		

tipo de silicato de magnesio y aluminio al que pertenezcan; como se describe en la siguiente

	D	ice			Debe decir	Justificación*
Tabla 1			•			
Tipo		osidad • s) (cP)		do de Al/ do de Mg	Apariencia	
	Mín.	Máx.	Mín.	Máx.		
ΙA	225	600	0.5	1.2	Gránulos o finas hojuelas	
ΙB	150	450	0.5	1.2	Polvo micronizado	
I C	800	2200	0.5	1.2	Gránulos o finas hojuelas	
II A	100	300	1.4	2.8	Gránulos o finas hojuelas	
se observa canela mar bordes. SOLUBILII se hincha de ENSAYO II A) MGA 02 porciones, agitación ir asegurar u de la mezo secar a ten película. Co superficie I desecador etilenglicol,	n por su super rón a café cua DAD. Casi-Inscuando se le a DE IDENTIDAL 231, Método II. 2 g de la mues a tensa, dejar rena hidratación la resultante enperatura amb olocar el portaribre de etilengide vacío. Satu dejar reposar	elas color crema ficie plana y co indo se observa cluble en agua grega agua o gl Agregar en per stra a 100 mL d eposar durante completa. Colo n un portaobjeto iente, hasta obt objetos sobre u licol dentro de u urar el desecado durante 12 h. F rayos X, calcula	lor In por sus y alcohol; icerina. queñas e agua con 12 h para car 2 mL os, dejar ener una na in or con Registrar el			

Dice	Debe decir	Justificación*
de <i>d</i> ; el pico más grande corresponde al valor de d, entre 1.50 y 1.72 nm.		
Procedimiento 2. Preparar una muestra tomando		
una porción al azar del silicato de magnesio y		
aluminio, registrar el modelo de difracción de rayos		
X, determinar el valor de <i>d</i> en la región entre 0.148		
y 0.154 nm: los picos se encuentran entre 0.1492 y		
0.1504 nm y entre 0.1510 y 0.1540 nm.		V
B) Cumple con los requisitos de la prueba de		
Viscosidad.		
C) Cumple con los requisitos en la prueba de		
Contenido de Aluminio y Contenido de Magnesio.		V
D) Cumple con la apariencia descrita en la <i>Tabla 1</i> .		
pH . <i>MGA 0701</i> . Entre 9.0 y 10.0. Determinar en		
una suspensión en agua (5 en 100) a una		
concentración de 50 mg/mL.		
VISCOSIDAD. MGA 0951, Método II. Cumple con		
los límites establecidos en la <i>Tabla 1</i> .		
Pesar una cantidad equivalente a 25 g de la		
muestra seca, resultante de la prueba de Pérdida		
por secado. Pasar rápidamente la muestra a un		
recipiente de un litro que contenga una cantidad de		
agua a una temperatura de 25 ± 2 °C y que sea		
suficiente para obtener una mezcla que pese 500		
g, mezclar durante 3 min exactos a una velocidad		
de 14 000 a 15 000 rpm. <i>Nota</i> : el calor generado		
durante el mezclado causa un aumento de la		
temperatura por arriba de 30 °C.		
Procedimiento. Pasar el contenido del recipiente a		
un vaso de precipitados de 600 mL, dejar reposar		
durante 5 min, y ajustar si es necesario a una		

	Ricarao Flores Magon, Precursor de la Revoluci	
Dice	Debe decir	Justificación*
temperatura de 33 ± 3 °C. Utilizar un viscosímetro		
rotacional equipado con una aguja que se		
especificará más adelante. Operar el viscosímetro		
a 60 rpm durante 6 min exactos y registrar la		
lectura.		
Para el tipo I A, usar una aguja que tenga un		
cilindro de 1.87 cm de diámetro y 0.69 cm de		
altura, unida a una flecha de 0.32 cm de diámetro.		
La distancia de la parte superior del cilindro al		
extremo más bajo de la flecha será de 2.54 cm, y		
la profundidad de inmersión será de 5.00 cm (aguja		
n.° 2); si la lectura es mayor del 90 % de la escala		*
total, repetir la determinación, utilizando una aguja		
similar a la n.° 2 con un cilindro de 1.27 cm de		
diámetro y 0.16 cm de altura (aguja n.° 3). Para el		
tipo I C, usar la aguja del n.° 3; si la lectura es		
mayor del 90 % de la escala total, repetir la		
determinación, utilizando una aguja con flecha		
cilíndrica de 0.32 cm de diámetro, a una		
profundidad de inmersión de 4.05 cm (aguja n.° 4).		
Para los tipos I B y II A usar la aguja del n.° 2.		
PÉRDIDA POR SECADO. MGA 0671. No más del		
8.0 % de su peso. Secar a 110 °C hasta peso		
constante.	Y	
LÍMITES MICROBIANOS . MGA 0571. El contenido		
total de la cuenta de organismos mesófilos		
aerobios no será mayor a 1 000 UFC/g por gramo .		
Libre de Escherichia coli.		
DEMANDA DE ÁCIDO . Considerando el valor		
obtenido en la prueba de <i>pérdida por secado</i> ,		
pesar una cantidad equivalente a 5.00 g de la		

Dice	Debe decir	Justificación*
muestra seca y dispersar en 500 mL de agua con		
ayuda de un agitador. Usar un cronómetro, y con		
agitación constante, agregar porciones de 3.0 mL		
de una solución de ácido clorhídrico 0.1 N a los 5,		
65, 125, 185, 245, 305, 365, 425, 485, 545, 605,		
665 y 725 s; agregar 1.0 mL a los 785 s.		
Determinar el pH potenciométricamente a los		
840 s. El pH no es mayor de 4.0.		
ARSÉNICO. MGA 0111, Método I, para		
compuestos inorgánicos. No más de 3 ppm.		
Preparación de referencia. Preparar de acuerdo		
con el MGA 0111 Prueba límite de Arsénico. Nota :		¥
conservar esta solución en recipientes de vidrio		
con tapón esmerilado y usar dentro de un periodo		
no mayor a 3 días. Transferir 5.0 mL (5 µg de		
arsénico) de la preparación de referencia a un		
matraz volumétrico de 25 mL y llevar a volumen		
con solución diluida de ácido clorhídrico (1:25).		
Preparación de la muestra. Pasar 13.3 g de la		
muestra a un vaso de precipitados de 250 mL que		
contenga 100 mL de ácido clorhídrico diluido		
(1:25), mezclar, cubrir con un vidrio de reloj,		
calentar a ebullición suave durante 15 min, agitar		
ocasionalmente, sin permitir que se forme espuma.		
Dejar que la materia insoluble se separe, decantar		
el líquido sobrenadante caliente a través de un		
papel filtro dentro de un matraz volumétrico de		
200 mL. Retener la mayor cantidad posible del		
sedimento en el vaso de precipitados. Agregar		
25 mL de ácido clorhídrico diluido caliente (1:25) al	7	

	Debe decir	
residuo que se encuentra en el vaso de precipitados, agitar, calentar a ebullición, permitir que la materia insoluble se separe, y decantar el líquido sobrenadante a través del filtro dentro del matraz volumétrico de 200 mL. Repetir la extracción con cuatro porciones adicionales de 25 mL de ácido clorhídrico diluido caliente (1:25), decantar cada porción de líquido sobrenadante a través del filtro, dentro del matraz volumétrico de 200 mL. En la última extracción pasar la mayor cantidad posible de la materia insoluble dentro del filtro. Enfriar los filtrados a temperatura ambiente, llevar al aforo con ácido clorhídrico diluido (1:25), mezclar. Procedimiento. Usar una alícuota de 25 mL de la preparación de la muestra para el procedimiento general. La absorbancia debida a la muestra no es mayor a la producida por 5 mL de la solución estándar (5 µg de As). La absorbancia debida a cualquier color rojo de la preparación de la muestra no debe exceder a la producida por la preparación de la referencia. PLOMO. MGA 0721. No más de 15 ppm. Nota: la preparación de referencia y la preparación de la muestra, pueden ser modificadas, si es necesario, para obtener soluciones de concentraciones adecuadas al intervalo de trabajo	Debe decir	Justificación*
del instrumento.		
Preparación de referencia. Preparar el día que se		
utilizará. Diluir 3.0 mL de la preparación de		
' '		
referencia de nitrato de plomo (véase <i>Metales</i>		

Dice	Debe decir	Justificación*
pesados, MGA 0561) con agua, y llevar a 100 mL.		
Cada mililitro de la preparación de referencia		
contiene el equivalente de 3 µg de Pb.		
Preparación de la muestra. Pasar 10.0 g de la		
muestra a un vaso de precipitados de 250 mL que		
contenga 100 mL de ácido clorhídrico diluido (1:25)		
y agitar, cubrir con un vidrio de reloj y calentar a		
ebullición durante 15 min. Enfriar a temperatura		
ambiente y dejar reposar hasta que la materia		
insoluble se separe. Decantar el líquido		
sobrenadante a través de papel filtro de poro		
grueso, a un vaso de precipitados de 400 mL.		¥
Agregar 25 mL de agua caliente a la materia		
insoluble que queda en el vaso de precipitados de		
250 mL, agitar y dejar reposar hasta que la materia		
insoluble se separe. Decantar el líquido		
sobrenadante a través del filtro dentro del vaso de		
precipitados de 400 mL. Repetir la extracción con		
dos porciones adicionales de 25 mL de agua,		
decantar cada porción de líquido sobrenadante a		
través del filtro al vaso de 400 mL. Lavar el filtro		
con 25 mL de agua caliente, colectar este filtrado		
dentro del vaso de 400 mL. Concentrar los		
extractos combinados con ebullición suave hasta		
20 mL. Si aparece un precipitado, agregar dos a		
tres gotas de ácido nítrico, calentar a ebullición y		
enfriar a temperatura ambiente. Filtrar los		
extractos concentrados a través de un papel filtro		
de poro grueso dentro de un matraz volumétrico de		
50 mL. Pasar con ayuda de agua el líquido		

Dice	Debe decir	Justificación*
remanente del vaso de precipitados de 400 mL a	2 3.00 3.00	
través del papel filtro dentro del matraz, llevar al		
aforo con agua y mezclar.		
Procedimiento. Determinar las absorbancias de la		
preparación de la muestra y de la preparación de		
referencia a 284 nm, En un espectrofotómetro de		
absorción atómica, equipado con una lámpara de		
cátodo hueco de plomo, corrección del ruido de		•
fondo con arco de deuterio, y un quemador de una		
sola ranura. Usar una flama oxidante de aire y		
acetileno. Determinar las absorbancias de la		
preparación de la muestra y de la preparación de		
referencia a 284 nm. La absorbancia de la		
preparación de la muestra no es mayor a la de la		
preparación de referencia.		
VALORACIÓN PARA ALUMINIO Y MAGNESIO.		
Nota: las preparaciones de referencia y de la		
muestra pueden diluirse cuantitativamente con		
agua, si es necesario, para obtener soluciones de		
concentraciones adecuadas, para el rango de		
trabajo lineal del instrumento.		
Solución de lantano. Agitar 88.3 g de cloruro de		
lantano (LaCl₃) con 500 mL de una solución de		
ácido clorhídrico 6 N, hasta que se disuelva	· · · · · · · · · · · · · · · · · · ·	
completamente. Pasar a un matraz volumétrico de		
1 000 mL con ayuda de agua y llevar al aforo con		
el mismo disolvente.		
Preparación de la muestra. Pasar 0.2 g de la		
muestra a un crisol de platino de 25 mL que		
contenga 1 g de metaborato de litio y mezclar.	7	
Calentar lentamente al principio e incinerar a		

Dice	Debe decir	Justificación*
una temperatura de 1 000 a 1 200 °C durante		
15 min. Enfriar, colocar el crisol en un vaso de		
precipitados de 100 mL que contenga 25 mL de		
ácido nítrico diluido (1:20), agregar 50 mL		
adicionales de este ácido y sumergir el crisol.		
Colocar dentro del crisol una barra de agitación		
cubierta de polifluorocarbono, y agitar suavemente		
hasta disolución completa. Verter el contenido		·
dentro de un vaso de precipitados de 250 mL y		
remover el crisol. Calentar la solución y pasar a		
través de un papel filtro de poro grueso, con ayuda		
de agua dentro de un matraz volumétrico de		~
200 mL, llevar al aforo con agua y mezclar.		
Preparaciones de referencia de aluminio.		
Disolver 1 g de aluminio en una mezcla de 10 mL		
de ácido clorhídrico y 10 mL de agua, calentar		
suavemente, pasar la solución a un matraz		
volumétrico de 1 000 mL, llevar al aforo con agua y		
mezclar. Esta solución contiene el equivalente a		
1 mg de aluminio por mililitro. Pasar alícuotas de 2,		
5 y 10 mL a diferentes matraces volumétricos de		
100 mL que contengan 200 mg de cloruro de		
sodio, llevar al aforo con agua y mezclar.		
Preparación de la muestra de aluminio. Colocar		
20 mL de la preparación de la muestra en un		
matraz volumétrico de 100 mL. Agregar 20 mL de		
una solución de cloruro de sodio (1 en 100), llevar		
al aforo con agua, mezclar.		
Procedimiento para aluminio. En un		
espectrofotómetro de absorción atómica equipado		
con una lámpara de cátodo hueco de aluminio,		

Dice	Debe decir	Justificación*
usar una flama oxidante de óxido nitroso-aire-		
acetileno, determinar las absorbancias de la		
preparación de la muestra de aluminio y cada una		
de las preparaciones de referencia de aluminio a		
309 nm. De la ecuación de regresión lineal calcular		
con las absorbancias y concentraciones de los		
estándares de aluminio, el contenido de aluminio		
de la muestra.		*
Preparaciones de referencia de magnesio.		
Depositar 1g de magnesio en un vaso de		
precipitados que contenga 20 mL de agua, agregar		
cuidadosamente 20 mL de ácido clorhídrico,		*
calentar si es necesario, para completar la		
reacción. Pasar la solución a un matraz		
volumétrico de 1 000 mL, llevar al aforo con agua,		
mezclar. Esta solución contiene el equivalente		
de1 mg de magnesio por mililitro. Pasar 10 mL de		
esta solución a un matraz volumétrico de		
1 000 mL, llevar al aforo con agua, mezclar. Pasar		
alícuotas de 5, 10, 15 y 20 mL a diferentes		
matraces volumétricos de 100 mL. A cada matraz		
agregar 20 mL de solución de lantano llevar al		
aforo con agua, mezclar.		
Preparación de la muestra de magnesio. Pasar		
una alícuota de 25 mL de la preparación de la		
muestra dentro de un matraz volumétrico de		
50 mL, llevar al volumen con agua y mezclar.		
Pasar una alícuota de 5 mL de esta dilución a un		
matraz volumétrico de 100 mL, agregar 20 mL de		
solución de lantano, llevar al aforo con agua,		
mezclar.		

Dice	Debe decir	Justificación*
Procedimiento para magnesio. En un		
espectrofotómetro de absorción atómica equipado		
con una lámpara de cátodo hueco de magnesio,		
usar una flama reductora de acetileno-aire,		
determinar las absorbancias de la muestra de		
magnesio y de cada una de las soluciones de		
referencia de magnesio a 285 nm. De la ecuación		
de regresión lineal, calcular con las absorbancias y		
las concentraciones de los estándares de		
magnesio, el contenido de magnesio en la		
muestra.		
VALORACIÓN PARA ALUMINIO		¥
Preparación concentrada de referencia de		
aluminio. Disolver 1.000 g de aluminio en una		
mezcla de 10 mL de ácido clorhídrico y 10 mL de		
agua, calentar suavemente, pasar la solución a un		
matraz volumétrico de 1 000 mL, llevar al aforo con		
agua y mezclar. Esta solución contiene el		
equivalente a 1 mg/mL de aluminio.		
Preparaciones de referencia de aluminio.		
Preparar una curva utilizando los siguientes		
volúmenes, transferir 2, 5 y 10 mL de la		
preparación concentrada de referencia de aluminio		
a diferentes matraces volumétricos de 100 mL que		
contengan 200 mg de cloruro de sodio, llevar al		
aforo con agua y mezclar.		
Preparación concentrada de la muestra de		
aluminio. Pasar 0.200 g de la muestra a un crisol		
de platino de 25 mL que contenga 1.0 g de		
metaborato de litio y mezclar. Calentar lentamente		
al principio e incinerar a una temperatura de 1 000		

Dice	Debe decir	Justificación*
a 1 200 °C durante 15 min. Enfriar, colocar el crisol en un vaso de precipitados de 100 mL que contenga 25 mL de ácido nítrico diluido (50 mg/mL) agregar 50 mL adicionales de este ácido y sumergir el crisol verticalmente. Colocar dentro del crisol una barra de agitación cubierta de polifluorocarbono, y agitar suavemente hasta disolución completa. Verter el contenido dentro de un vaso de precipitados de 250 mL y remover el crisol. Calentar la solución y pasar a través de un papel filtro de poro grueso, con ayuda de agua dentro de un matraz volumétrico de 200 mL, llevar al aforo con agua y mezclar.	Debe decil	
Preparación de la muestra de aluminio. Colocar 20 mL de la preparación concentrada de la muestra de aluminio en un matraz volumétrico de 100 mL. Agregar 20 mL de una solución de cloruro de sodio (10 mg/mL), llevar al aforo con agua, mezclar.		
Procedimiento para aluminio. En un espectrofotómetro de absorción atómica equipado con una lámpara de cátodo hueco de aluminio y un quemador de una sola ranura, usar una flama oxidante de óxido nitroso-aire y acetileno, determinar las absorbancias de la preparación de la muestra de aluminio y de las preparaciones de referencia de aluminio a 309 nm. Calcular el contenido de aluminio en la muestra a través de la ecuación de regresión lineal obtenida con las absorbancias y concentraciones de las preparaciones de referencia de aluminio.		

Dice	Debe decir	Justificación*
VALORACIÓN PARA MAGNESIO		
Solución de lantano. Agitar 88.30 g de cloruro de lantano (LaCl ₃) con 500 mL de una solución de ácido clorhídrico 6 N, hasta que se disuelva completamente. Pasar a un matraz volumétrico de 1 000 mL con ayuda de agua y llevar al aforo con el mismo disolvente.		
Preparación concentrada de referencia de magnesio. Depositar 1.000 g de magnesio en un vaso de precipitados de 250 mL que contenga 20 mL de agua, agregar cuidadosamente 20 mL de ácido clorhídrico, calentar si es necesario, para completar la reacción. Pasar la solución a un matraz volumétrico de 1 000 mL, llevar al aforo con agua, mezclar. Esta solución contiene el equivalente de 1 mg/mL de magnesio. Pasar 10.0 mL de esta solución a un matraz volumétrico de 1 000 mL, llevar al aforo con agua, mezclar.		
Preparaciones de referencia de magnesio. Preparar una curva utilizando los siguientes volúmenes, transferir 5, 10, 15 y 20 mL de la preparación concentrada de referencia de magnesio a diferentes matraces volumétricos de 100 mL. A cada matraz agregar 20.0 mL de solución de lantano llevar al aforo con agua y mezclar. Preparación concentrada de la muestra. Usar la preparación concentrada de la muestra cómo se indica para el contenido de aluminio.		
Preparación de la muestra de magnesio. Pasar una alícuota de 25 mL de la preparación		

Dice	Debe decir	Justificación*
concentrada de la muestra a un matraz volumétrico de 50 mL, llevar al volumen con agua y mezclar. Pasar una alícuota de 5.0 mL de esta dilución a un matraz volumétrico de 100 mL, agregar 20.0 mL de solución de lantano, llevar al aforo con agua,		
Procedimiento para magnesio. En un espectrofotómetro de absorción atómica equipado con una lámpara de cátodo hueco de magnesio, usar una flama reductora de acetileno-aire, determinar las absorbancias de la preparación de la muestra de magnesio y de las preparaciones de referencia de magnesio a 285 nm. Calcular el contenido de magnesio en la muestra a través de la ecuación de regresión lineal obtenida con las absorbancias y concentraciones de las preparaciones de referencia de magnesio.		
Rango de contenido de aluminio y magnesio. Procedimiento. Utilizando los resultados en la valoración de aluminio y valoración de magnesio, determinar el contenido de aluminio y el contenido de magnesio. Cumpliendo con lo indicado en la Tabla 1. CONSERVACIÓN. En envases bien cerrados. MARBETE. En el marbete indicar su tipo.		

^{*}Para una mejor comprensión de su solicitud adjunte bibliografía u otros documentos que sustenten sus comentarios.