

**DATOS DEL PROMOVENTE** 

Nombre:

Institución o empresa:





"2025, Año de la Mujer Indígena"

## **COMENTARIOS**

Con fundamento en el numeral 6.3.3.1 de la Norma Oficial Mexicana NOM-001-SSA1-2020, se publica el presente proyecto a efecto de que los interesados, a partir del 1º de mayo y hasta el 30 de junio de 2025, lo analicen, evalúen y envíen sus observaciones o comentarios en idioma español y con el sustento técnico suficiente ante la CPFEUM, sito en Río Rhin número 57, colonia Cuauhtémoc, código postal 06500, Ciudad de México.

Correo electrónico: consultas@farmacopea.org.mx.

Cargo:

Dirección:

| Teléfono:                                                                                                                                                                                                                                                                                                                                                                                                                                               | fono: Correo electrónico: |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|
| EL TEXTO EN COLOR ROJO HA SIDO MODIFICADO                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                |
| Dice                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Debe decir                | Justificación* |
| DETERMINACIÓN DE ADN RESIDUAL DE CÉLULAS HOSPEDERAS                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                |
| Este método general describe los métodos analíticos que pueden usarse para medir el contenido y caracterizar el tamaño del cuantificar el ADN residual de la célula hospedera en productos biológicos/biotecnológicos. El presente método no excluye el uso de nuevas alternativas que sean aceptadas por la autoridad competente.                                                                                                                      |                           |                |
| Actualmente, existen varios métodos analíticos con alta sensibilidad para la cuantificación de ADN residual de las células hospederas, que incluyen dos aproximaciones: a) La reacción en cadena de la polimerasa cuantitativa (qPCR) y el b) método inmunoenzimático. El método a utilizar dependerá de la naturaleza del producto biológico a ser analizado tomando en cuenta las características y limitantes de cada uno de acuerdo con lo indicado |                           |                |

en la Tabla 1.







|                                                                                                                        | Dice                                                                                                    |                                                                                                                                           | Debe decir | Justificación* |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
|                                                                                                                        |                                                                                                         | aracterísticas del                                                                                                                        |            |                |
| Características                                                                                                        | todos inmunoen<br>qPCR<br>(Método A)                                                                    | Método<br>inmunoenzimático<br>(Método B)                                                                                                  |            |                |
| Permite determinar la distribución de tamañe de ADN Sensibilidad de la prueba                                          | Si                                                                                                      | No                                                                                                                                        |            |                |
| Límite de cuantificación (puede variar dependiendo de la matriz, del método y de las sustancias que pueden interferir) | 0.01 – 10 pg/mL                                                                                         | 2 – 10 pg/mL                                                                                                                              |            |                |
| Especificidad<br>(ADN total vs<br>ADN<br>específico)                                                                   | ADN específico                                                                                          | ADN total                                                                                                                                 |            |                |
| Sustancias que interfieren                                                                                             | Proteínas                                                                                               | Detergentes/proteínas<br>/solventes/ ARN                                                                                                  |            |                |
| Limitaciones                                                                                                           | Fragmentos más<br>pequeños que el<br>producto de PCR<br>no pueden ser<br>detectados y<br>cuantificados. | No es aplicable para productos que se basan en ADN. El contenido de ADN se subestima para fragmentos debajo de 1,000 pares de bases (pb). |            |                |
| Tomado de la Fa                                                                                                        | rmacopea Europea.                                                                                       |                                                                                                                                           |            |                |
|                                                                                                                        | N DE LA MUES                                                                                            |                                                                                                                                           |            |                |
|                                                                                                                        |                                                                                                         | dual de la célula                                                                                                                         | V          |                |
| hospedera pue                                                                                                          | ede varıar depen                                                                                        | diendo del tipo de                                                                                                                        |            |                |







|                                                      | 2023, Ano de la Mujer Indigena |                |
|------------------------------------------------------|--------------------------------|----------------|
| Dice                                                 | Debe decir                     | Justificación* |
| producto biológico/biotecnológico y de la capacidad  |                                |                |
| de eliminación del DNA durante el proceso de         |                                |                |
| manufactura.                                         |                                |                |
| Dependiendo del origen de la muestra, puede ser      |                                |                |
| necesario un pre-tratamiento de ésta para asegurar   |                                |                |
| la recuperación apropiada del ADN residual de la     |                                |                |
| célula hospedera.                                    |                                |                |
| Cuando se analizan muestras altamente                |                                |                |
| purificadas de proteína, tales como proteínas        |                                |                |
| recombinantes o anticuerpos monoclonales, la         |                                |                |
| digestión con proteinasa o la cromatografía de       |                                |                |
| afinidad podría ser suficiente para separar el ADN   |                                | *              |
| residual de la célula hospedera. Sin embargo, para   |                                |                |
| sistemas más complejos tales como vacunas o          |                                |                |
| vectores virales, un paso adicional de lisis viral   |                                |                |
| podría requerirse para liberar el ADN residual de la |                                |                |
| célula hospedera de las partículas virales.          |                                |                |
| Debido a que el método inmunoenzimático es           |                                |                |
| especialmente sensible a la interferencia por        |                                |                |
| proteínas, durante el procesamiento es necesario     |                                |                |
| incorporar una etapa de pre-tratamiento inicial, el  |                                |                |
| cual puede incluir digestión con proteinasa K y con  |                                |                |
| dodecil-sulfato de sodio (SDS). Este paso puede      |                                |                |
| mejorar la recuperación de ADN residual de la        |                                |                |
| célula hospedera. En algunos casos, este DNA         |                                |                |
| también puede unirse a los componentes de la         |                                |                |
| muestra y/o sustancias solubles que interfieren      |                                |                |
| pueden estar presentes, en cuyo caso podría ser      |                                |                |
| necesario extraer el ADN residual de la célula       |                                |                |
| hospedera de la muestra.                             |                                |                |
| El ADN puede extraerse utilizando protocolos         |                                |                |
| recomendados que han demostrado un porcentaje        |                                |                |







| Dice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Debe decir | Justificación* |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| de recuperación satisfactorio. Existen varios métodos disponibles, incluyendo la precipitación de ADN o la unión específica de ADN a una matriz (p. ej. perlas magnéticas o columnas de sílica). También pueden usarse kits comerciales para extraer de las muestras de el ADN residual. Algunos de estos kits usan un agente caotrópico (yoduro de sodio) y un detergente (laurilsarcosianato de sodio) para romper la asociación del ADN residual del hospedero y los componentes de la muestra. Posteriormente, el ADN residual del hospedero en la muestra se recupera por coprecipitación con una molécula acarreadora (tal como glicógeno) en presencia de etanol o 2-isopropanol. Varios procedimientos independientes de extracción pueden requerirse, dependiendo de la reproducibilidad de la recuperación. Es necesario incluir controles negativos en cada procedimiento de extracción. En algunos casos, es necesario hacer diluciones de las muestras para reducir el efecto de la matriz. También puede aplicarse un factor de corrección para tomar en cuenta el porcentaje de recuperación. |            |                |
| A) MÉTODO DE qPCR. (Tomado de la EuPh).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                |
| Este método puede usarse para cuantificar una secuencia de ADN celular blanco a partir de una variedad de muestras. Para la cuantificación de ADN residual de la célula hospedera, el qPCR busca una secuencia estable altamente conservada de una región de la célula hospedera o elementos de repetición blanco para mejorar la sensibilidad del ensayo que se usa. Cuando los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                |







| Dies Debe des in Mujer Indigena                        |            |                |  |
|--------------------------------------------------------|------------|----------------|--|
| Dice                                                   | Debe decir | Justificación* |  |
| elementos de repetición son el blanco, podría ser      |            |                |  |
| difícil eliminar el potencial ruido de fondo debido al |            |                |  |
| ADN del ambiente (p. ej. Cuando se usan                |            |                |  |
| secuencias humanas Alu). El qPCR también puede         |            |                |  |
| usarse para determinar la distribución de tamaños      |            |                |  |
| del ADN residual de la célula hospedera, como una      |            |                |  |
| prueba de caracterización dependiendo de la            |            |                |  |
| naturaleza del sustrato celular (p.ej. líneas          |            |                |  |
| celulares continuas) y la cantidad de ADN residual     |            |                |  |
| de la célula hospedera.                                |            |                |  |
| La especificidad del método de qPCR debe               |            |                |  |
| establecerse durante la validación del método          |            |                |  |
| demostrando la ausencia de reacciones cruzadas         |            |                |  |
| con secuencias no relacionadas. Alternativamente,      |            |                |  |
| también pueden usarse los métodos de PCR               |            |                |  |
| digital.                                               |            |                |  |
| Amplificación por qPCR.                                |            |                |  |
| La detección y cuantificación de ADN residual del      |            |                |  |
| hospedero por qPCR puede involucrar el uso de          |            |                |  |
| fluoróforos no específicos que se intercalan en el     |            |                |  |
| ADN de doble cadena, o sondas de ADN de                |            |                |  |
| secuencia específica. (Referir a la descripción del    |            |                |  |
| método de PCR).                                        |            |                |  |
| El número de ciclos requeridos para la medición        |            |                |  |
| fluorescente puede exceder el valor del umbral o       |            |                |  |
| threshold (Ct o Cp) y se correlaciona con la           |            |                |  |
| cantidad inicial de ADN residual del hospedero en      |            |                |  |
| la muestra.                                            |            |                |  |
| Si se desarrollan varias extracciones, las muestras    |            |                |  |
| resultantes deben ser analizadas a una dilución        |            |                |  |







| Diag                                                    | 2023, Ano de la Mujer maigena | lostificación* |
|---------------------------------------------------------|-------------------------------|----------------|
| Dice                                                    | Debe decir                    | Justificación* |
| adecuada. Siempre es necesario tener controles          |                               |                |
| negativos para el PCR.                                  |                               |                |
| Es necesario desarrollar una curva estándar             |                               |                |
| utilizando diluciones seriadas del ADN genómico         |                               |                |
| de la célula hospedera para poder determinar los        |                               |                |
| niveles de ADN residual del hospedero en los            |                               |                |
| productos biológicos con base en los valores de Ct      |                               |                |
| o C <sub>p</sub> . Se recomienda el uso de ADN genómico |                               |                |
| representativo y cuidadosamente caracterizado           |                               |                |
| (extraído a partir de las células usadas para la        |                               |                |
| producción de los productos biológicos), para la        |                               |                |
| generación del estándar.                                |                               | <b>*</b>       |
| La misma metodología se aplica para la evaluación       |                               |                |
| del tamaño del ADN residual del hospedero. Por lo       |                               |                |
| menos se deben diseñar 2 sets de cebadores para         |                               |                |
| amplificar fragmentos que se sobreponen de              |                               |                |
| diferentes tamaños en la secuencia blanco.              |                               |                |
| También pueden usarse kits comerciales para la          |                               |                |
| detección de las secuencias blanco que contengan        |                               |                |
| los controles necesarios para la detección del ADN      |                               |                |
| residual del hospedero.                                 |                               |                |
| Criterios de idoneidad.                                 |                               |                |
| Muestras control. Con la finalidad de controlar el      |                               |                |
| riesgo de contaminación y asegurar una adecuada         |                               |                |
| sensibilidad, cada ensayo de PCR incluye los            |                               |                |
| siguientes controles:                                   |                               |                |
| <ul> <li>Un control negativo para qPCR y un</li> </ul>  |                               |                |
| control negativo de extracción,                         |                               |                |
| compuesto de una muestra en una                         |                               |                |
| matriz adecuada en la que se ha                         |                               |                |







| 2025, Ano de la Mujer Indigena                                                                      |            |                |  |
|-----------------------------------------------------------------------------------------------------|------------|----------------|--|
| Dice                                                                                                | Debe decir | Justificación* |  |
| comprobado que está libre de la(s)                                                                  |            |                |  |
| secuencia(s) blanco.                                                                                |            |                |  |
| <ul> <li>Un control positivo para qPCR, el cual</li> </ul>                                          |            |                |  |
| contiene un número definido de copias                                                               |            |                |  |
| de secuencias blanco o una                                                                          |            |                |  |
| concentración definida de ADN, la cual                                                              |            |                |  |
| se determinó de manera individual                                                                   |            |                |  |
| para cada sistema de ensayo.                                                                        |            |                |  |
| - Un control de extracción, que                                                                     |            |                |  |
| generalmente se agrega como control                                                                 |            |                |  |
| interno al material de prueba a una                                                                 |            |                |  |
| concentración definida o un número de                                                               |            | <b>V</b>       |  |
| copias de la secuencia blanco. En este                                                              |            |                |  |
| caso, los amplicones deben ser                                                                      |            |                |  |
| claramente discernibles y pueden ser                                                                |            |                |  |
| detectados por reacciones de qPCR                                                                   |            |                |  |
| separadas. Alternativamente, puede                                                                  |            |                |  |
| usarse un control externo que consiste                                                              |            |                |  |
| en una muestra mezclada con una                                                                     |            |                |  |
| cantidad de ADN genómico bien                                                                       |            |                |  |
| caracterizado.                                                                                      |            |                |  |
| La recuperación de la extracción debe estar en                                                      |            |                |  |
| valores predeterminados basados en el desarrollo                                                    |            |                |  |
| del ensayo de acuerdo con lo demostrado durante la validación de éste.                              | Ť          |                |  |
|                                                                                                     |            |                |  |
| <ul> <li>Curva estándar de ADN genómico. La<br/>curva estándar es lineal en el intervalo</li> </ul> |            | -              |  |
| seleccionado.                                                                                       |            |                |  |
| El coeficiente de determinación R² asociado con la                                                  |            |                |  |
|                                                                                                     |            |                |  |
| curva estándar debe ser mayor o igual a 0.98. La                                                    |            |                |  |







| Dice                                                                                      | Debe decir | Justificación* |
|-------------------------------------------------------------------------------------------|------------|----------------|
| eficiencia del PCR se encuentra dentro de los                                             |            |                |
| límites pre-establecidos.                                                                 |            |                |
| El coeficiente de variación para los diferentes                                           |            |                |
| extractos o réplicas no es mayor que los criterios                                        |            |                |
| predefinidos.                                                                             |            |                |
| Cálculos:                                                                                 |            |                |
| Si se desarrollan diversas extracciones, cada                                             |            |                |
| muestra que se extrajo debe ser analizada                                                 |            |                |
| individualmente. El contenido de ADN residual del                                         |            |                |
| hospedero se calcula a partir de la curva estándar                                        |            |                |
| de ADN genómico promediando los valores                                                   |            |                |
| obtenidos de las diferentes extracciones o réplicas.                                      |            |                |
| Un factor de corrección podría también ser aplicado para tomar en cuenta el porcentaje de |            |                |
| recuperación para la cuantificación del ADN total                                         |            |                |
| de las muestras.                                                                          |            |                |
| Para la caracterización del tamaño del ADN                                                |            |                |
| residual del hospedero, la distribución de los                                            |            |                |
| fragmentos que se sobreponen de tamaños                                                   |            |                |
| diferentes se calcula como la relación entre el                                           |            |                |
| número de copias de cada amplicón de cada                                                 |            |                |
| tamaño con respecto al número de copias del                                               |            |                |
| amplicón de menor tamaño.                                                                 |            |                |
| Método específico de qPCR para determinar el                                              |            |                |
| ADN residual de <i>E. coli</i> y células CHO.                                             |            |                |
| El siguiente método es adecuado para determinar                                           |            |                |
| el ADN residual proveniente de células hospederas                                         |            |                |
| en productos terapéuticos recombinantes                                                   |            |                |
| producidos usando la bacteria Escherichia coli (E.                                        |            |                |
| coli) o el linaje celular de ovario de hámster chino                                      | /          |                |
| (CHO).                                                                                    |            |                |







| Dice                                                                                                             | Debe decir | Justificación* |
|------------------------------------------------------------------------------------------------------------------|------------|----------------|
| Se presenta un procedimiento de extracción                                                                       |            |                |
| adecuado, que puede ser usado previamente a la                                                                   |            |                |
| determinación de ADN residual de células                                                                         |            |                |
| hospederas por métodos basados en la reacción                                                                    |            |                |
| en cadena cuantitativa de la polimerasa (qPCR).                                                                  |            |                |
| PROCEDIMIENTO:                                                                                                   |            |                |
| • PREPARACIÓN DE LA MUESTRA:                                                                                     |            |                |
| Este método sirve y es validado para                                                                             |            |                |
| concentraciones de ADN iniciales entre 0.01 y 50                                                                 |            |                |
| pg/µL.                                                                                                           |            |                |
| Solución de resuspensión (SR): Disolver                                                                          |            |                |
| clorhidrato de tris(hidroximetil)aminometano (Tris-                                                              |            | Ť              |
| HCI) y ácido etilendiaminotetraacético (EDTA) para                                                               |            |                |
| obtener una solución de 10 mM y 1.0 mM,                                                                          |            |                |
| respectivamente. Agregar ácido clorhídrico o                                                                     |            |                |
| hidróxido de sodio para ajustar a el pH de 8.0.                                                                  |            |                |
| Solución estándar de ADN (SEADN): Diluir el                                                                      |            |                |
| estándar de ADN genómico de células CHO o el                                                                     |            |                |
| estándar de ADN genómico de <i>E. coli</i> según sea                                                             |            |                |
| apropiado, hasta una concentración de 1 μg/mL en SR.                                                             |            |                |
|                                                                                                                  |            |                |
| <b>Soluciones muestra (SM):</b> Diluir o reconstituir las muestras del análisis para: 1) evitar la interferencia |            |                |
| de la matriz que afecta la recuperación del ADN, 2)                                                              |            |                |
| obtener un volumen inicial apropiado o 3) llevar la                                                              |            |                |
| concentración del analito dentro del intervalo                                                                   |            |                |
| cuantitativo del método de qPCR. Se pueden diluir                                                                |            |                |
| las SM en agua o en SR, si fuese necesario. Para                                                                 |            |                |
| las muestras de producto, las SM deben contener                                                                  |            |                |
| material de partida suficiente para permitir la                                                                  |            |                |
| determinación del contenido de ADN residual, si                                                                  |            |                |







| D'                                                  | 2023, Ano de la Mujer Indigena | 1 (101 17 4    |
|-----------------------------------------------------|--------------------------------|----------------|
| Dice                                                | Debe decir                     | Justificación* |
| estuviera presente al límite indicado en la         |                                |                |
| especificación.                                     |                                |                |
| Solución de control positivo (SCP): Preparar la     |                                |                |
| SCP agregando cantidades conocidas de SEADN         |                                |                |
| a las SM hasta una concentración apropiada para     |                                |                |
| la valoración (justificando el valor por la         |                                |                |
| especificación o de otra manera).                   |                                |                |
| Solución de control negativo (SCN): Utilizar        |                                |                |
| agua o SR en lugar de las SM en los                 |                                |                |
| procedimientos de extracción y se extraerá junto    |                                |                |
| con cualquier muestra (si es necesaria la           |                                |                |
| extracción). La SCN se analiza usando el método     |                                |                |
| basado en qPCR para determinar el contenido de      |                                |                |
| ADN aportado por el ruido de fondo (background) y   |                                |                |
| para demostrar que no existe posible                |                                |                |
| contaminación cruzada durante la valoración.        |                                |                |
| Etanol al 70%: Preparar agregando agua al etanol    |                                |                |
| para obtener una concentración final de 70% (v/v).  |                                |                |
| Solución de proteinasa K: Disolver Tris-HCl,        |                                |                |
| EDTA y dodecil-sulfato de sodio (SDS) para          |                                |                |
| obtener soluciones de 100 mM (pH 8.0), 5 mM y       |                                |                |
| 100 mg/mL, respectivamente. Agregar proteinasa      |                                |                |
| K1 a esta solución hasta una concentración final de |                                |                |
| 10 mg/mL.                                           |                                |                |
| Solución de yoduro de sodio: Yoduro de sodio        |                                |                |
| 6 M, EDTA 15 mM, sulfito de sodio al 0.25%, N-      |                                |                |
| lauroil-sarcosinato de sodio al 0.5%, Tris-HCl      |                                |                |
| 25 mM de pH 8.0 y 35 µg/mL de acrilamida. Para      |                                |                |
| 100 mL (modificar la escala según corresponda),     |                                |                |
| agregar en el siguiente orden mientras se           |                                |                |
| encuentra en agitación: 50 mL de agua libre de      |                                |                |







| Dice                                                 | Debe decir | Justificación* |
|------------------------------------------------------|------------|----------------|
|                                                      | Depe decil | Justilicación  |
| nucleasas, 0.25 g de sulfito de sodio, 3.0 mL de     |            |                |
| solución de EDTA 0.5 M y 2.5 mL de Tris-HCl 1 M      |            |                |
| de pH 8.0 (todas las soluciones deben prepararse     |            |                |
| con agua libre de nucleasas). Posteriormente,        |            |                |
| agregar lentamente 89.93 g de yoduro de sodio.       |            |                |
| Agregar agua libre de nucleasas hasta un volumen     |            |                |
| final de 100 mL. Filtrar la solución usando una      |            |                |
| membrana con tamaño de poro de 0.2 µm.               |            |                |
| NOTA: Esta solución base puede almacenarse en        |            |                |
| la oscuridad a 4°C durante un máximo de 1 año.       |            |                |
| En el día de su uso, agregar acrilamida y N-lauroil  |            |                |
| sarcosinato de sodio hasta obtener                   |            |                |
| concentraciones finales de 35 µg/mL y 0.5% (p/v),    |            |                |
| respectivamente.                                     |            |                |
| NOTA: El agregado de N-lauroil sarcosinato de        |            |                |
| sodio a la solución de yoduro de sodio puede         |            |                |
| causar turbidez. Si esto sucede, puede ser útil      |            |                |
| entibiar la solución a 50 - 55°C durante 2-3 minutos |            |                |
| antes de su uso para la extracción.                  |            |                |
| Extracción: Agregar 50 µL de solución de             |            |                |
| proteinasa K a cada 450 µL de muestras por           |            |                |
| triplicado de las SM; y de la SCP y de al menos      |            |                |
| una muestra de la SCN, en un tubo de centrífuga      |            |                |
| de 2.0 mL. Mezclar e incubar a 60 ± 2°C durante      |            |                |
| 1- 24 horas. Agregar 500 µL de solución de yoduro    |            |                |
| de sodio a cada tubo. Mezclar e incubar a 40°C       |            |                |
| durante 15 minutos. Agregar 900 µL de etanol al      |            |                |
| 100%, mezclar bien e incubar a temperatura           |            |                |
| ambiente durante 15 minutos. Centrifugar a           |            |                |
| 10 000 × $g$ durante 15 minutos para formar un       |            |                |
| pellet de ADN.                                       |            |                |







|                                                        | "2025, Ano de la Mujer Indigena" |                |
|--------------------------------------------------------|----------------------------------|----------------|
| Dice                                                   | Debe decir                       | Justificación* |
| <b>NOTA:</b> Puede ser útil centrifugar a 2°- 8°C para |                                  |                |
| mejorar la recuperación de ADN.                        |                                  |                |
| Retirar y desechar el sobrenadante. Lavar el pellet    |                                  |                |
| agregando 1 mL de etanol al 70% que contenga 3         |                                  |                |
| µg/mL de glicógeno o acrilamida, centrifugar           |                                  |                |
| nuevamente y desechar el sobrenadante. Secar el        |                                  |                |
| pellet al aire durante 5 - 10 minutos hasta que no     |                                  |                |
| se observe ningún líquido. Volver a suspender el       |                                  |                |
| pellet y registrar el volumen de agua o SR usado,      |                                  |                |
| que puede requerirse cuando se informen los            |                                  |                |
| resultados finales en Cálculos.                        |                                  |                |
| • ANÁLISIS POR qPCR.                                   |                                  | <b>Y</b>       |
| Mezcla maestra 2X: La solución amortiguadora           |                                  |                |
| debe contener cloruro de magnesio,                     |                                  |                |
| desoxiadenosina trifosfato, desoxiguanosina            |                                  |                |
| trifosfato, desoxicitidina trifosfato, deoxiuridina    |                                  |                |
| trifosfato, desoxitimidina trifosfato y ADN            |                                  |                |
| polimerasa altamente purificada de acuerdo a lo        |                                  |                |
| indicado por el fabricante. Mezclar bien               |                                  |                |
| inmediatamente antes de usar.                          |                                  |                |
| Soluciones Stock de cebadores y sondas de              |                                  |                |
| ADN: Según el ADN de las especies que se estén         |                                  |                |
| analizando, preparar soluciones 10 µM individuales     |                                  |                |
| de los pares de cebadores y sondas que se indican      |                                  |                |
| a continuación usando agua libre de nucleasas (ver     |                                  |                |
| la Tabla 2).                                           |                                  |                |
| Tabla 2. Cebadores para qPCR.                          |                                  |                |
| Cebad 5'-<br>or CCTTACGACCAGGGCTA                      |                                  |                |
| or CCTTACGACCAGGGCTA directo CACA-3'                   |                                  |                |
| (Fwd)                                                  | V                                |                |
|                                                        |                                  |                |
|                                                        |                                  |                |







|                    |                                                                                                     |                                            |  | "2025, Ano de la Mujer Indigena" |                |
|--------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|--|----------------------------------|----------------|
|                    |                                                                                                     | Dice                                       |  | Debe decir                       | Justificación* |
| E. coli            | Cebad<br>or<br>inverso<br>(Rev)                                                                     | 5'-<br>CTCGCGAGGTCGCTTCT<br>C-3'           |  |                                  |                |
|                    | Sondaª                                                                                              | 5'-<br>CGTGCTACAATGGCGCA<br>TACA-3'        |  |                                  |                |
|                    | Cebad<br>or<br>directo<br>(Fwd)                                                                     | 5'-<br>CCTGAGTTCAATTCCCA<br>GCAA-3'        |  |                                  |                |
| Célula<br>s<br>CHO | Cebad<br>or<br>inverso<br>(Rev)                                                                     | 5'-<br>ACATTCTGCTTCCATGTA<br>TATCTGCA-3'   |  |                                  |                |
|                    | Sonda                                                                                               | 5'-<br>TGGCTCACAACCATCCG<br>TTATGAGACCT-3' |  |                                  |                |
|                    |                                                                                                     | e marcarse en 5' con 6-                    |  |                                  |                |
|                    |                                                                                                     | ína y marcarse en 3' con 6                 |  |                                  |                |
|                    | carboxitetrametilrodamina o una alternativa                                                         |                                            |  |                                  |                |
|                    | adecuada. Tomado de la USP.                                                                         |                                            |  |                                  |                |
|                    | <b>Solución para sonda de ADN:</b> Diluir la solución para sonda de ADN hasta 2.5 µM con agua libre |                                            |  |                                  |                |
|                    | de nucleasas.                                                                                       |                                            |  |                                  |                |
| <u> </u>           |                                                                                                     | ándar: Diluir la solución de               |  |                                  |                |
|                    | estándar de ADN para obtener cinco o más                                                            |                                            |  |                                  |                |
|                    | estándares adecuados dentro del intervalo de                                                        |                                            |  |                                  |                |
| concent            | ración de                                                                                           | e 0.001 a 100 pg/uL.                       |  |                                  |                |







| Dice                                                                              | Debe decir | Justificación* |
|-----------------------------------------------------------------------------------|------------|----------------|
| Análisis de las muestras: Soluciones muestra,                                     | Doubt doon | Cucinousion    |
| solución de control positivo, solución de control                                 |            |                |
| negativo y soluciones estándar.                                                   |            |                |
| NOTA: Si se extraen las muestras, entonces se                                     |            |                |
| usarán los extractos de las soluciones muestra y                                  |            |                |
| los extractos de las soluciones de control.                                       |            |                |
| Transferir 25 µL de la mezcla maestra 2X a cada                                   |            |                |
| pocillo de una placa para qPCR de 96 pocillos.                                    |            |                |
| Agregar 5 µL del cebador directo (fwd) de ADN                                     |            |                |
| base, del cebador inverso (rev) de ADN base y de                                  |            |                |
| la solución para sonda de ADN de las especies                                     |            |                |
| apropiadas a cada pocillo. Agregar 10 µL de las                                   |            | <b>*</b>       |
| soluciones muestra (extracto), las soluciones                                     |            |                |
| estándar (extracto), la solución de control negativo                              |            |                |
| (extracto) o la solución de control positivo                                      |            |                |
| (extracto) a los respectivos pocillos.                                            |            |                |
| NOTA: El volumen de reacción de la qPCR se                                        |            |                |
| puede modificar según sea apropiado para adaptarse a los diferentes instrumentos. |            |                |
| Mezclar, sellar la placa herméticamente y                                         |            |                |
| centrifugar durante 1 minuto a $1000 \times g$ . Colocar la                       |            |                |
| placa en un termociclador para qPCR adecuado.                                     |            |                |
| Incubar durante 2 minutos a 50°C, luego durante                                   |            |                |
| 10 minutos a 95°C, seguido de 40 ciclos, cada                                     |            |                |
| ciclo de 95°C durante 15 segundos y 60°C durante                                  |            |                |
| 1 minuto.                                                                         |            |                |
| NOTA: Las condiciones de PCR son sugeridas, se                                    |            |                |
| recomienda estandarizar el método de acuerdo a                                    |            |                |
| los reactivos, instrumentos y termocicladores                                     |            |                |
| (equipos) usados. <del>Algunos instrumentos y</del>                               |            |                |
| reactivos requieren una etapa de preincubación.                                   |            |                |







| "2025, Año de la Mujer Indígena"                    |            |                |  |
|-----------------------------------------------------|------------|----------------|--|
| Dice                                                | Debe decir | Justificación* |  |
| Se deben seguir cuidadosamente las                  |            |                |  |
| recomendaciones específicas para el                 |            |                |  |
| instrumento/reactivo.                               |            |                |  |
| Se debe monitorear la señal de la sonda marcada     |            |                |  |
| usando un detector de fluorescencia adecuado.       |            |                |  |
| Determinar el valor del umbral usando las           |            |                |  |
| recomendaciones específicas para el instrumento.    |            |                |  |
| Registrar el ciclo umbral (Ct) para cada muestra.   |            | ·              |  |
| Cálculos:                                           |            |                |  |
| Graficar el logaritmo de la cantidad de ADN de las  |            |                |  |
| soluciones estándar en función del Ct.              |            |                |  |
| Calcular la pendiente y la intersección con el eje. |            | ~              |  |
| Usando estos valores y la siguiente ecuación,       |            |                |  |
| calcular la cantidad de ADN en cada pocillo:        |            |                |  |
| $Resultado = 10^{\left(\frac{C_t - b}{m}\right)}$   |            |                |  |
| Ct = Ciclo umbral de las soluciones muestra.        |            |                |  |
| b = Intersección de la línea para las soluciones    |            |                |  |
| estándar.                                           |            |                |  |
| m = Pendiente de la línea para las soluciones       |            |                |  |
| estándar.                                           |            |                |  |
| Calcular la cantidad de ADN en cada una de las      |            |                |  |
| SM. Corregir por la dilución o la concentración de  |            |                |  |
| la muestra.                                         |            |                |  |
| Nota: La mayoría de los equipos de PCR calculan     |            |                |  |
| automáticamente la eficiencia, la pendiente, la     |            |                |  |
| intersección y la cantidad de ADN por pocillo de    |            |                |  |
| acuerdo a la curva estándar; en caso contrario usar |            |                |  |
| la ecuación antes indicada.                         | 7          |                |  |
| Aptitud del sistema:                                |            |                |  |







| Dice                                                | Debe decir | Justificación* |
|-----------------------------------------------------|------------|----------------|
|                                                     | Debe decil | Justinicación  |
| Muestras: Solución de control negativo y            |            |                |
| soluciones estándar.                                |            |                |
| Requisitos de aptitud:                              |            |                |
| Solución de control negativo: El C <sub>t</sub>     |            |                |
| correspondiente a la solución de control negativo,  |            |                |
| si se presenta, es no menor que el Ct de todas las  |            |                |
| concentraciones más bajas de las soluciones         |            |                |
| estándar.                                           |            |                |
| Sensibilidad: El Ct correspondiente a la            |            |                |
| concentración más baja de las soluciones estándar   |            |                |
| es no más de 39.                                    |            |                |
| Linealidad: El coeficiente de regresión relacionado |            | •              |
| con las soluciones estándar es no menos de 0.98.    |            |                |
| La pendiente se encuentra entre -3.1 y -3.8.        |            |                |
| Criterios de aceptación: Toda muestra               |            |                |
| cuantificable debe estar dentro de la curva         |            |                |
| estándar.                                           |            |                |
| Exactitud: La media de recuperación de              |            |                |
| cantidades conocidas agregadas de tres              |            |                |
| determinaciones repetidas de la SCP se encuentra    |            |                |
| entre 50% y 150%.                                   |            |                |
| NOTA: Corregir por la dilución de la muestra sí se  |            |                |
| requiere debido al procedimiento de extracción.     |            |                |
| Desviación estándar relativa: No más de 30%         |            |                |
| para tres determinaciones repetidas de las SM; no   |            |                |
| más de 30% para tres determinaciones repetidas      |            |                |
| de la SCP.                                          |            |                |
| El límite de ADN residual se define en la           |            |                |
| monografía del producto.                            |            |                |
| B) Método inmunoenzimático. (Tomado de la           |            |                |
| EuPh).                                              |            |                |







| Dice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Debe decir | Justificación* |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| El método inmunoenzimático es una técnica no específica para la cuantificación de ADN residual del hospedero (sin importar su origen). Es también un ensayo para ADN total, por lo que, consecuentemente, no solamente es crítico evitar la contaminación por parte del ADN del ambiente, sino también deben usarse materiales y reactivos libres de ADN. Las muestras usadas deben estar libres de contaminación microbiana; además, todas las muestras, controles y estándares deben ser procesados bajo condiciones controladas hasta el paso de desnaturalización. El método también puede detectar ADN de cadena simple si se diseña para tal fin. |            |                |
| PRINCIPIO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                |
| Este ensayo de ADN total consiste en 4 pasos:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |
| - Desnaturalización y formación de complejos, donde el ADN se desnaturaliza a ADN de cadena simple por calentamiento de la muestra. El ADN desnaturalizado se mezcla con un reactivo que contiene una proteína conjugada con estreptavidina (que se une al ADN de cadena simple) y un anticuerpo monoclonal anti-ADN conjugado con ureasa. La proteína de unión al ADN y el anticuerpo monoclonal son específicos para el ADN de cadena simple pero no son específicos para ninguna secuencia. La fase líquida, en presencia de estreptavidina, facilita la formación de                                                                                |            |                |







| 2023, Ano de la Mujer Indigena                                |            |                |  |  |
|---------------------------------------------------------------|------------|----------------|--|--|
| Dice                                                          | Debe decir | Justificación* |  |  |
| un complejo con el ADN de cadena                              |            |                |  |  |
| simple de la muestra.                                         |            |                |  |  |
| <ul> <li>Filtración, donde el complejo se filtra a</li> </ul> |            |                |  |  |
| través de una membrana de                                     |            |                |  |  |
| nitrocelulosa biotinilada. La biotina en                      |            |                |  |  |
| la membrana captura los complejos de                          |            |                |  |  |
| unión con estreptavidina. La                                  |            |                |  |  |
| membrana se lava para remover                                 |            | Ť              |  |  |
| cualquiera de los reactivos que no se                         |            |                |  |  |
| unen. La unión inespecífica se evita                          |            |                |  |  |
| mediante el uso de una membrana de                            |            |                |  |  |
| nitrocelulosa recubierta con albúmina.                        |            |                |  |  |
| - Detección, donde la membrana se                             |            |                |  |  |
| coloca en el detector, el cual contiene                       |            |                |  |  |
| una solución de urea que reacciona                            |            |                |  |  |
| con la ureasa en el complejo de ADN y                         |            |                |  |  |
| produce amonio. El cambio de pH                               |            |                |  |  |
| asociado se mide en un sensor                                 |            |                |  |  |
| potenciométrico en mV/s y es                                  |            |                |  |  |
| directamente proporcional a la                                |            |                |  |  |
| cantidad de ADN en la muestra.                                |            |                |  |  |
| - Análisis, donde los datos de la muestra                     |            |                |  |  |
| y de la curva estándar se analizan                            |            |                |  |  |
| usando un software apropiado para                             |            |                |  |  |
| determinar el contenido de ADN                                |            |                |  |  |
| residual de la célula hospedera en la                         |            |                |  |  |
| muestra.                                                      |            |                |  |  |
| Todas las muestras y los controles negativos se               |            |                |  |  |
| miden mezclados y sin mezclar. La solución                    |            |                |  |  |
| mezclada (1,000 pg/mL) se prepara a partir de una             |            |                |  |  |







| D.I.                                                       | 2023, Ano de la Mujer Indigena | 1 (16) 17 %    |
|------------------------------------------------------------|--------------------------------|----------------|
| Dice                                                       | Debe decir                     | Justificación* |
| solución concentrada de estándar (ADN de timo de           |                                |                |
| ternera) a 5,000 pg/mL.                                    |                                |                |
| Criterios de adecuabilidad.                                |                                |                |
| Muestras control:                                          |                                |                |
| <ul> <li>La cantidad de ADN en el control</li> </ul>       |                                |                |
| positivo se encuentra en el intervalo                      |                                |                |
| indicado por el certificado del lote dado                  |                                |                |
| por el proveedor;                                          |                                |                |
| <ul> <li>La recuperación de la mezcla en el</li> </ul>     |                                |                |
| control negativo está entre 80 y 120%.                     |                                |                |
| Muestras:                                                  |                                |                |
| <ul> <li>Cuando se analizan varias réplicas, el</li> </ul> |                                | Ť              |
| coeficiente de variación de las                            |                                |                |
| diferentes réplicas no es mayor que los                    |                                |                |
| criterios predefinidos;                                    |                                |                |
| <ul> <li>La recuperación de la mezcla se</li> </ul>        |                                |                |
| encuentra entre el 80 y 120%.                              |                                |                |
| Cálculos:                                                  |                                |                |
| El contenido de ADN residual de la célula                  |                                |                |
| hospedera se calcula en pg/ mL, usando la                  |                                |                |
| siguiente ecuación:                                        |                                |                |
| $ID \times (C-A)$                                          |                                |                |
| $\frac{ID \times (C-A)}{V}$                                |                                |                |
| ·                                                          | ·                              |                |
| ID = Relación para la dilución y el muestreo.              |                                |                |
| C = Valor promedio (en pg por tubo) para los tubos         |                                |                |
| de prueba que contienen la muestra diluida.                |                                |                |
| A = Valor promedio (en pg por tubo) para los tubos         |                                |                |
| de prueba que contienen el control negativo.               |                                |                |
| V = Volumen en el tubo de prueba, en mL                    |                                |                |
| (generalmente 0.5 mL por tubo).                            |                                |                |







| Dice                                                                                                                                                | Debe decir | Justificación* |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| donde necesariamente, este resultado debe ser corregido por la recuperación en la extracción (p. Ej., recuperación promedio para un producto dado). |            |                |
| Este método deberá ser validado por el fabricante teniendo como base el Método General de Análisis de ELISA.                                        |            |                |

<sup>\*</sup>Para una mejor comprensión de su solicitud adjunte bibliografía u otros documentos que sustenten sus comentarios.