

"2019, Año del Caudillo del Sur, Emiliano Zapata"

COMENTARIOS

Con fundamento en el numeral 4.11.1 de la Norma Oficial Mexicana NOM-001-SSA1-2010, se publica el presente proyecto a efecto de que los interesados, a partir del 1º de noviembre y hasta el 31 de diciembre de 2019, lo analicen, evalúen y envíen sus observaciones o comentarios en idioma español y con el sustento técnico suficiente ante la CPFEUM, sito en Río Rhin número 57, colonia Cuauhtémoc, código postal 06500, Ciudad de México. Fax: 5207 6890 Correo electrónico: consultas@farmacopea.org.mx.

DATOS DEL PROMO	ENTE
Nombre:	Cargo:
Institución o empresa:	Dirección:
Teléfono:	Correo electrónico:

EL TEXTO EN COLOR ROJO HA SIDO MODIFICADO

Dice	Debe decir	Justificación*
MGA 0111. PRUEBA LÍMITE DE		
ARSÉNICO		
METODO 1. COLORÍMETRICO Y/O POR		
COMPARACIÓN VISUAL		
Esta prueba se basa en la secuencia de dos reacciones		
químicas cuantitativas llevadas a cabo bajo condiciones		
establecidas, a partir del arsénico contenido en un		
producto dado.		
En la primera reacción, el arsénico, en presencia de		
hid <mark>ró</mark> geno, forma arsin <mark>a.</mark>		
En la segunda reacción, la arsina así formada, reacciona		
con una SR de dietilditiocarbamato de plata, formándose		
un c <mark>ompuesto colorido, el cua</mark> l es valorado por		
espectrofotometría.		
En medio ácido el arsénico se reduce a arsina por el		
zinc; la arsina reacciona con dietilditiocarbamato de		
plata formando un complejo soluble de color rojo que		
es proporcional al contenido de arsénico en la muestra,		
el cual es valorado por espectrofotometría visible.		
Hay dos métodos para la cuantificación, el método I		
para compuestos inorgánicos y el método II para		
orgánicos.		

"2019, Año del Caudillo del Sur, Emiliano Zapata"				
Dice	Debe decir	Justificación*		
APARATO				
El aparato consiste en un matraz (a), donde se genera la arsina adaptado a una unidad depuradora (c) y un tubo de absorción (e). Para efectos de ensamble hermético, las juntas (b) y (d) deben ser esmeriladas.				
Figura 0111.1. Aparato para la determinación de arsénico.				
Preparación de la solución de referencia de arsénico. Transferir 66.0 mg de trióxido de arsénico, previamente pulverizado y secado a 105 °C durante 1h, a un matraz volumétrico de 500 mL y disolver en 5 mL de solución				
de hidróxido de sodio (1:5) (m/v); neutralizar con solución de ácido sulfúrico 2 N, agregar 10 mL más de solución				
de ácido sulfúrico 2 N y llevar al volumen con agua recientemente hervida y fría, mezclar. Conservar esta				
solución en refrigeración y usar dentro de un periodo no				
mayor de 30 días. Transferir 5 mL de la solución				
anterior a un matraz volumétrico de 500 mL, agregar 5				

2019, Ano dei Cauditto dei Sur, Emitiano Zapata				
Dice	Debe decir	Justificación*		
mL de solución de ácido sulfúrico 2 N y llevar al aforo				
con agua recientemente hervida y fría, mezclar. Cada				
mililitro de esta solución de referencia contiene el				
equivalente a 1 µg de arsénico. Conservar esta solución				
en recipientes de vidrio con tapón esmerilado y usar				
dentro de un periodo no mayor a 3 días.				
Preparación de la muestra. Si la cantidad de muestra				
no se especifica en la monografía correspondiente,				
calcular la cantidad de muestra, con la siguiente		*		
fórmula:		_		
G = 3.0/L				
Donde:				
G = Cantidad de muestra necesaria, en gramos.				
L = Límite de arsénico en partes por millón.				
PREPARACIÓN I MÉTODO I . PARA				
COMPUESTOS INORGÁNICOS				
Preparación de la muestra. Transferir al matraz				
generador (véase figura 0111.1) la solución preparada				
como se indica en la monografía del producto				
correspondiente. Cuando la monografía no indique el				
volumen a utilizar, preparar la muestra con la cantidad				
obtenida como G; agregar agua hasta obtener un				
volumen de 35 mL y continuar con el procedimiento				
general.				
Preparación de la solución de referencia. Tomar de la				
solución de referencia de arsénico la porción				
equivalente al límite establecido en la monografía				
correspondiente y seguir el procedimiento general.				
PREPARACIÓN II. MÉTODO II. PARA				
COMPUESTOS ORGÁNICOS				
RECOMENDACIONES ESPECIALES. La prueba				
debe ser realizada bajo las siguientes condiciones:				
Cuando se aplique esta prueba en compuestos				
orgánicos:				

Dice	Debe decir	Justificación*
a) Tomar medidas de seguridad extremas, ya que	2.2.2.2	
algunas muestras pueden reaccionar en forma violenta		
cuando se digieren con peróxido de hidrógeno.		
b) Para los casos de compuestos que contengan		
halógenos, calentar la mezcla a baja temperatura evitando		
la ebullición al agregar el ácido sulfúrico. Agregar el		
peróxido de hidrógeno antes de que se inicie la		
carbonización para evitar alguna pérdida de arsénico		
trivalente.		Y
c) Si la sustancia problema reacciona demasiado rápido		
con los 5 mL de ácido sulfúrico concentrado y empieza a		
carbonizarse antes de calentar, adicionar en lugar de 5 mL		
de ácido sulfúrico concentrado, 10 mL de ácido sulfúrico		
diluido 1:2 v/v y unas gotas de peróxido de hidrógeno		*
antes de calentar.		
Preparación de la muestra. Colocar la cantidad de		
muestra que se indica en la monografía correspondiente		
(G), directamente en el matraz generador. Agregar a la		
muestra 5 mL de ácido sulfúrico concentrado, algunas		
perlas de vidrio y digerir calentando en una parrilla a		
una temperatura no mayor de 120 °C dentro de una		
campana de extracción de gases, hasta que la		
carbonización se inicie. Agregar más ácido sulfúrico si es necesario, para humedecer completamente la		
muestra, considerando que el volumen total agregado		
no exceda de 10 mL. Cuando la muestra haya iniciado		
su descomposición por el ácido, cuidadosamente		
agregar gota a gota solución de peróxido de hidrógeno		
al 30 %, esperando cada vez a que la reacción cese		
antes de efectuar la siguiente adición. Agregar las		
primeras gotas muy lentamente con agitación constante		
para prevenir una reacción violenta. Suspender el		
calentamiento en caso de que la formación de espuma		
sea excesiva. Cuando la reacción ha terminado, calentar		
cuidadosamente rotando el matraz ocasionalmente, para		
evitar que algunas porciones de la muestra queden	7	
adheridas a las paredes del matraz.		

2019, Ano ael Cauaillo ael Sur, Emiliano Zapata					
Dice	Debe decir	Justificación*			
Mantener las condiciones de oxidación durante la					
digestión agregando pequeñas cantidades de solución					
de peróxido de hidrógeno al 30 %, cada vez que la					
mezcla se torne café o se oscurezca. Continuar la					
digestión hasta que la materia orgánica se destruya y se					
desprendan humos abundantes de trióxido de azufre y					
que la solución sea incolora o presente solamente un					
color ligeramente amarillo. Enfriar cuidadosamente,					
agregar 10 mL de agua, mezclar y evaporar nuevamente					
hasta aparición de humos fuertes; repetir el		A			
procedimiento si es necesario para eliminar cualquier					
traza de peróxido de hidrógeno. Enfriar, lavar					
cuidadosamente las paredes del matraz con 10 mL de					
agua, diluir con agua a 35 mL y continuar como se					
indica en el procedimiento general.					
Preparación de la solución de referencia. Mezclar la					
alícuota de la solución de referencia de arsénico, según					
el límite establecido en la monografía correspondiente,					
con 2 mL de ácido sulfúrico concentrado, agregar igual					
cantidad de peróxido de hidrógeno al 30 % usado en la					
oxidación de la muestra, mezclar, calentar la solución					
hasta formación de vapores fuertes, enfriar y agregar					
cuidadosamente 10 mL de agua. Evaporar nuevamente					
hasta aparición de humos abundantes, enfriar, diluir con					
agua a 35 mL y continuar como se indica en el proce-					
dimiento general.					
Preparación de la solución de referencia intermedia					
(solución B) de arsénico de 0.1 mg/L (ppm) a partir					
de un estándar de 1 000 mg/L (ppm); medir 1 mL del					
estándar y llevar a un volumen de 100 mL con ácido					
nítrico 2 % v/v (solución A); tomar 1 mL de la solución					
A y llevar a un volumen de 100 mL con SR de ácido					
clorhídrico 5 N (solución B); solución de referencia 0.1					
mg/L (ppm As).					
PROCEDIMIENTO GENERAL. A la preparación de					
la muestra y de la referencia, agregar 20 mL de solución					
de ácido sulfúrico 7 N, 2 mL de SR de yoduro de					

Dice	Debe decir	Justificación*
potasio y 0.5 mL de SR de cloruro estanoso concentrado ácido y 1 mL de 2-propanol, mezclar. Dejar reposar a temperatura ambiente, durante 30 min. Empacar la unidad depuradora con dos porciones de algodón previamente impregnadas con solución saturada de acetato de plomo y secadas al vacío a temperatura ambiente, dejando un pequeño espacio entre las dos porciones de algodón. Lubricar las juntas esmeriladas con una grasa adecuada para uso con disolventes orgánicos y conectar la unidad depuradora al tubo de absorción por medio de una pinza. Transferir 3.0 mL de SR de dietilditiocarbamato de plata al tubo de absorción. En caso necesario, usar un volumen mayor de SR de dietilditiocarbamato de plata exactamente medido, considerando la misma cantidad para la referencia, siempre y cuando el aparato lo permita. Agregar 3 g de zinc granular (malla n.º 20) a la mezcla del matraz e inmediatamente conectar la unidad depuradora ensamblada al matraz generador, colocar el sistema en baño de agua manteniéndolo a una temperatura de 25 ± 3 °C, permitir la formación y paso de hidrógeno por el sistema durante 45 min, para desarrollar el color, agitando el sistema suavemente a intervalos de 10 min. Desconectar el tubo de absorción y transferir la solución colorida de la muestra y de la referencia a celdas de 1 cm y leer simultáneamente a una longitud de máxima absorbancia, entre 535 y 540 nm en un espectrofotómetro o colorímetro usando la SR de dietilditiocarbamato de plata como blanco.	Debe decir	Justificación*
entre la muestra y el estándar sea muy evidente, se puede omitir la lectura en el espectrofotómetro, realizar		
únicamente la comparación visual.		
INTERFERENCIAS QUÍMICAS. El cromo, cobalto,		
cobre, mercurio, molibdeno, níquel, paladio, plata y sus		
sales, pueden interferir con la formación de arsina.	V	

	"2019, Ano del Caudillo del Sur, Emiliano Zapata"				
Dice	Debe decir	Justificación*			
El antimonio que forma estibina produce una					
interferencia positiva en el desarrollo del color con la					
SR de dietilditiocarbamato de plata. Cuando se					
sospecha la presencia de antimonio, el color rojo que se					
produce en la segunda solución de dietilditiocarbamato					
de plata, puede ser comparada a la longitud de onda de					
máxima absorbancia entre 535 y 540 nm, con un					
espectrofotómetro o colorímetro, puesto que a esta					
longitud de onda la interferencia debida a la estibina es					
despreciable.					
INTERPRETACIÓN. La absorbancia de la solución					
colorida de la muestra, no es mayor a la obtenida con la					
solución de la referencia. El contenido de arsénico no es					
mayor al límite indicado en la monografía del producto					
correspondiente.					
METODO II. ESPECTROSCOPÍA					
ESPECTROFOTOMETRIA DE ABSORCION					
ATOMICA CON GENERADOR DE HIDRUROS.					
El sistema de atomización por generación de hidruro					
representa un método para introducir de manera más					
eficiente al arsénico en forma de gas (hidruro volátil),					
con la finalidad de incrementar los límites de detección					
y determinar en ng/mL (ppb). El hidruro volátil se					
genera al mezclar la solución acuosa acidificada de la					
muestra a un pequeño volumen de una disolución al 1%					
de borohidruro de sodio, en un separador de vidrio					
(veáse figura 0111.2). La reacción característica es:					
$3BH_4^-(ac) + 3H^+(ac) + 4H_3AsO_3(ac)$					
$\rightarrow 3H_3BO_3(ac) + 4AsH_3(g)$					
$+3H_2O(l)$					
El hidruro volátil, en este caso, arsina (AsH ₃), se					
moviliza mediante un gas inerte (nitrógeno o argón)					
hacia la cámara de atomización (celda de cuarzo),					
donde se lleva a cabo la descomposición del hidruro y					
se obtienen los átomos gaseosos del analito. Para					
mayor referencia véase el MGA 0331. Espectroscopia	Y				
atómica.					

"2019, Año del Caudillo del Sur, Emiliano Zapata"				
Dice	Debe decir	Justificación*		
Celda de cuarzo				
Paso óptico				
Bomba				
Separador Gas/Líquido Acido				
NaBH ₄				
Drenador 1 1				
 •				
← Gas Inerte				
Figura 0111.2. Esquema general de un generador de				
hidruros				
Preparación de la solución de referencia intermedia				
(solución B) de arsénico de 0.1 mg/L (ppm) a partir				
de un estándar de 1000 mg/L (ppm); medir 1 mL del				
estándar y llevar a un volumen de 100 mL con ácido				
nítrico 2% v/v (solución A); tomar 1 mL de la solución				
A y llevar a un volumen de 100 mL con SR de ácido				
clorhídrico 5 N (solución B); solución de referencia 0.1				
mg/L (ppm As).				
Preparación de solución de ácido clorhídrico 5 N				
(SR). Transferir 202 mL de ácido clorhídrico a un				
matraz volumétrico de 500 mL y llevar a volumen con				
agua desionizada.				
Preparación de solución de yoduro de potasio al 1%				
p/v. Pesar 0.5 g de yoduro de potasio y disolver en agua				
desionizada, llevar a volumen de 50 mL.				
Preparación de solución de hidróxido de sodio al				
0.8% p/v. Pesar 0.25 g de hidróxido de sodio y disolver				
en 30 mL de agua desionizada.				
Preparación de solución de borohidruro de sodio al				
0.6% p/v. Pesar 0.3 g de borohidruro de sodio y				
disolver en 30 mL una solución de hidróxido de sodio				
al 0.8% y llevar a volumen de 50 mL con agua				
desionizada.				
Preparación de la muestra. Si la cantidad de muestra				
no se especifica en la monografía correspondiente,				

Dice	Debe decir	Justificación*
calcular la cantidad de muestra, con la fórmula		
siguiente:		
G = 3.0/L		
Donde:		
G = Cantidad de muestra necesaria, en gramos.		
L = Límite de arsénico en mg/L (partes por millón)		
PREPARACIÓN I. PARA COMPUESTOS INORGÁNICOS		
Preparación de la muestra. Utilizar la solución preparada como se indica en la monografía individual. Cuando la monografía no indique el volumen a utilizar, preparar la muestra con la cantidad obtenida de acuerdo con la ecuación de G; agregar agua hasta obtener un volumen de 50 mL y continuar con el procedimiento general.		
Preparación de la solución de referencia de trabajo puntual. Tomar de la solución B de referencia de arsénico la porción equivalente al límite establecido en la monografía del producto correspondiente y seguir el procedimiento general. PREPARACIÓN II. PARA COMPUESTOS ORGÁNICOS		
Preparación de la muestra. Realizar la preparación tal y como se indica en la monografía individual del producto correspondiente y llevar a cabo la digestión ácida por sistema abierto, por reflujo o sistema cerrado por microondas. Una vez realizada la digestión aforar con agua desionizada a 50 mL.		
Preparación de la solución de referencia de trabajo puntual. Tomar de la solución B de referencia de arsénico la porción equivalente al límite establecido en la monografía del producto correspondiente, realizar el mismo procedimiento de digestión que lleve a cabo con la muestra y al final aforar a 50 ml con agua desionizada; seguir a continuación el procedimiento general.		

Dice	Debe decir	Justificación*
PROCEDIMIENTO GENERAL. Este procedimiento		
está diseñado para llevar a cabo la comparación o		
cuantificación de arsénico. Optimizar las condiciones		
del equipo: Establecer las condiciones de acuerdo a lo		
recomendado por el fabricante: 1) flujo de la solución		
muestra, entre 5 y 8 mL/min, 2) flujo de 1 mL/min para		
la línea de ácido clorhídrico 5 N y para la línea del		
agente reductor (NaBH ₄) o seguir las condiciones		
recomendadas por el fabricante. La lámpara debe de		
tener por lo menos 30 minutos de calentamiento previo		
a la medición y mantener un voltaje menor a 550 volts.		
Comparación con el estándar de referencia de trabajo		
puntual .		
Tomar 5 mL de la preparación de la muestra, añadir 1		
mL de KI 1% p/v y llevar a 25 mL con HCl 5 N.		
Repetir este procedimiento con la solución de referencia		
de trabajo puntual . Estas soluciones se miden después		
de 60 minutos para asegurar la reducción del arsénico.		
INTERPRETACIÓN. La absorbancia de la solución		
de la muestra, no es mayor a la obtenida con la solución		
de la referencia. El contenido de arsénico no es mayor		
al límite indicado en la monografía del producto		
correspondiente. Cuantificación mediante una curva de calibración.		
Preparar los sistemas de la curva de calibración, a partir		
de la solución B de referencia de 0.1 mg/L (ppm) de		
arsénico (As), como se indica en la <i>tabla 1</i> . Esperar por		
lo menos 1 hora antes de la medición, para que se lleve	Y	
a cabo la reacción completa de reducción, tanto en la		
muestra como en los sistemas de la curva de		
calibración.		
Tabla 1. Sistemas para la curva de calibración de As*.		
Vol. (mL) Vol. (mL) Conc.		
Sistamo KI AS		
1% n/v 0.1 mg/L ug/I		
(S01 D)		
Blanco 0		

Dice				Debe decir	Justificación*
1	1	2	8		
2	1	3	12		
3	1	4	16		
4	1	5	20		
5	1	6	24		
*Todos lo	os sistemas lleva	ar a un volume	en final de 25 mL		
	clorhídrico 5 N				
	mL de la prepar				
	1% p/v y lleva				
	soluciones se r				
	urar la reducció				
Determinar los valores de absorbancia de las soluciones					
de referencia y de la muestra, realizando la lectura con					
un espectrómetro espectrofotómetro de absorción					
atómica con generador de hidruros a una longitud de			ia longitud de		
onda de 197.2 nm. INTERPRETACIÓN. Realizar los cálculos del			1 1 1		
análisis de regresión lineal e interpolar el valor de la					
absorbancia obtenida para la solución de la muestra					
para obtener el contenido de As en la solución diluida					
de la muestra y aplicar la siguiente fórmula para obtener					
la concentración en la muestra y compararla con el					
valor límite permitido en la monografía individual.					

^{*}Para una mejor comprensión de su solicitud adjunte bibliografía u otros documentos que sustenten sus comentarios.